

Fall, Gait, and Sedentary Monitor Lars Arntsen

INTRODUCTION

Approached by Dr. Todd Shatynski

- Specialty. Sports Medicine
- Interest. Nonsurgical treatment of injuries

Poor Patient Monitoring

- Patient Self Reporting. Unreliable and vague
- Need. Wearable device + monitors patient physical activity

INDUSTRY GAP

Existing Solutions

Wearable Fitness Trackers. Apple Watch, Oura Ring, and Fitbit

Need for Novelty

Software as a Medical Device (SAMD) ~ Clinically Validated.

- Supports healthcare decisions
- Monitors and analyzes physical activity

2025

CLINICAL REQUIREMENTS

ACTIVITY TRACKING

Continuously monitor levels of physical activity to identify sedentary behavior

WEARABILITY

Safe, wireless, rechargeable, comfortable, lightweight, etc.

GAIT MONITORING

Capture gait metrics such as stride length, cadence, and stability

FALL RISK ASSESSMENT Analyze motion patterns to detect signs of increased fall risk

DESIGN OVERVIEW

DESIGN - ANKLE SLEEVE

Fig. 1 CAD Multi-View of Device

Location. Ankle

- Produces accurate IMU data
- Discrete

Material. Polyester-Spandex

- Hypoallergic & Elastic
- Easily manufactured

DESIGN - ELECTRONICS

Fig. 2 Function Block Diagram

Key Board Components

IMU Sensor. MPU-9250

Microcontroller. STM32L476

Battery. Li-Po24 mA

Charger & Power Supply. ADP5350

Radio Module. DWM1000

Vibration Motor. NFP-C1030

DESIGN - CLASSIFIER

Dataset. IMU Data

- 6 Inputs (ACC & GYRO 3 Axes)
- Labeled Activity Entries

Classifier Type. XGBoost

Timestamp Ax		Ау	Az	Gx	Gy	Gz
18:12:13	-244	-16732	-3360	-3088	2326	-763
18:12:13	-380	-16248	-1900	-3072	2087	-1892
			•••			

Table 1 IMU Output Data

DESIGN - APP

Key Features

Motion Classification Tracking
Fall Risk & Physical Lifestyle Assessment
User & Physician Friendly UI/UX

Fig. 3 Homepage Design

PROTOTYPING OVERVIEW

Laptop. Power Supply &
 Runs Python Script

2. Arduino Uno. Initializes IMU

4. Arduino-Laptop.

Transfers Data to Laptop as Text File + Laptop Processes the Data

3. IMU. Transfers Data to Arduino

PROTOTYPE FABRICATION

Fig. 4 Arduino and Breadboard (L) & Assembled Prototype on User (R)

PROTOTYPING DATASET BUILDING

Activity Types

- Laying Down
- Normal Gait
- Abnormal Gait
- Falling
- Standing
- Sitting

Conduct Each
Activity and
Label the Data

Fig. 5 Dataset Folder

PROTOTYPING CLASSIFIER TRAINING

Classification Report:							
	precision	recall	f1-score	support			
abnormalgait	0.99	0.97	0.98	1523			
fall	0.98	1.00	0.99	1523			
layingdown	1.00	1.00	1.00	1523			
normalgait	0.98	0.97	0.97	1523			
sitting	1.00	1.00	1.00	1523			
standing	1.00	1.00	1.00	1523			
accuracy			0.99	9138			
macro avg	0.99	0.99	0.99	9138			
weighted avg	0.99	0.99	0.99	9138			

Confusion Matrix:								
[[1	480	8	1	32	2	0]		
[0	1521	0	2	0	0]		
[0	3	1520	0	0	0]		
[18	19	0	1480	3	3]		
[1	1	0	1	1520	0]		
[0	0	0	2	0	1521]]		

Cross-validation Accuracy: 0.97

Fig. 6 Activity Type Classification Model Training Performance

PROTOTYPING PROOF OF CONCEPT

In Real-Time...

Test 1. Differentiate between normal and abnormal gait

Test 2. Activate vibration motor after 5 minutes sedentary behavior

Test 3. Detect a fall

PROTOTYPING VALIDATION

Fig. 7 Test 1

Fig. 8 Test 2

data: 2984,-6756,1756,13716,-37-442-45, and data: 2984,-6756,1756,13716,-3744,42-45, and data: 3088,-6712,1808,13808,-3744,42-45, and data: 3191,-6760,1840,13848,-3776,421,-376, and data: 3294,-6776,1840,13848,-3776,421,-307, and data: 3397,-6820,1880,13856,-3760,431,-307, and data: 3500,-6392,1748,13936,-3760,338,-449, and data: 3500,-6392,1748,1392,-6392,-

Fig. 9 Test 3

FUTURE WORK

PROTOTYPE ITERATION

Work towards a device that meets all the clinical requirements

FDA VALIDATION

Hardware. Class II Medical Device

Software. Software as a Medical Device

Requires 510(k) clearance

THANK YOU

Lars Arntsen

978-500-8671

larspwarntsen@gmail.com

https://larspwarntsen.github.io/

SitiWear